What theorem underlies all the calculations?
Variable name | Description |
---|---|
raD1ACtrlSetp | Setpoint (in deg) for angle \(\theta_1\) of servomotor 1 |
raD2ACtrlSetp | Setpoint (in deg) for angle \(\theta_2\) of servomotor 2 |
raD3ACtrlSetp | Setpoint (in deg) for angle \(\theta_3\) of servomotor 3 |
raD4ACtrlSetp | Setpoint (in deg) for angle \(\theta_4\) of servomotor 4 |
raD5ACtrlSetp | Setpoint (in deg) for angle \(\theta_5\) of servomotor 5 |
raD6ACtrlSetp | Setpoint (in deg) for angle \(\theta_6\) of servomotor 6 |
raD7ACtrlSetp | Setpoint (in deg) for angle \(\theta_7\) of servomotor 7 |
raD1CurrMeasAct | Actual measured current of servomotor 1 in mA |
raD2CurrMeasAct | Actual measured current of servomotor 2 in mA |
raD3CurrMeasAct | Actual measured current of servomotor 3 in mA |
raD4CurrMeasAct | Actual measured current of servomotor 4 in mA |
raD5CurrMeasAct | Actual measured current of servomotor 5 in mA |
raD6CurrMeasAct | Actual measured current of servomotor 6 in mA |
raD7CurrMeasAct | Actual measured current of servomotor 7 in mA |
raO1PosAct | Actual [\(x\), \(y\), \(z\)] coordinates of link O1 |
raO2PosAct | Actual [\(x\), \(y\), \(z\)] coordinates of link O2 |
raO3PosAct | Actual [\(x\), \(y\), \(z\)] coordinates of link O3 |
raO4PosAct | Actual [\(x\), \(y\), \(z\)] coordinates of link O4 |
raO5PosAct | Actual [\(x\), \(y\), \(z\)] coordinates of link O5 |
raO6PosAct | Actual [\(x\), \(y\), \(z\)] coordinates of link O6 |
At this stage you will gain an understanding of the principles of the robot`s movement.
Use control sliders to change the robot`s position and move the gripper to the aimed object.
Coordinates of the grip [\(x\), \(y\), \(z\)] |
---|
\(O_6\)
![]() |
In this experiment the main goal is study and use of the Denavit-Hartenberg parameters
Quick memo on the formulas from the methodical guidelines:
\(\begin{bmatrix} x_{06_{i-1}} \\ y_{06_{i-1}} \\ z_{06_{i-1}} \\ 1 \end{bmatrix}=M_i\times\begin{bmatrix} x_{06_{i}} \\ y_{06_{i}} \\ z_{06_{i}} \\ 1 \end{bmatrix}\)
\(M_i=\begin{bmatrix}\cos\theta_i & -\sin\theta_i\cos\alpha_i & \sin\theta_i\sin\alpha_i & r_i\cos\theta_i \\\sin\theta_i & \cos\theta_i\cos\alpha_i & -\cos\theta_i\sin\alpha_i & r_i\sin\theta_i \\0 & \sin\alpha_i & \cos\alpha_i & d_i \\0& 0 & 0 & 1 \end{bmatrix}\)
Angles, deg | Limit range, deg | Coordinates of the grip [\(x\), \(y\), \(z\)] |
---|---|---|
\(\theta_1\)
\(\theta_2\)
\(\theta_3\)
\(\theta_4\)
\(\theta_5\)
\(\theta_6\)
\(\theta_7\)
|
|
\(real O_6\)
\(math O_6\)
![]() |
At this stage you will learn to use position of the robot to get angular information
Quick memo on the formulas from the methodical guidelines:
![]() |
![]() |
\(\theta_2\in x\leq \angle90\) \(\theta_2=\beta\) | \(\theta_2\in x > \angle90\) \(\theta_2=\pi-\beta\) |
![]() |
![]() |
\(\theta_3\in x\leq \angle90\) \(\theta_3=\gamma-\frac{\pi}{2}\) | \(\theta_3\in x> \angle90\) \(\theta_3=\frac{3\pi}{2}-\gamma\) |
![]() |
![]() |
\(\theta_5\in x\leq \angle40\) \(\theta_5=\delta_2-\frac{\pi}{2}\) | \(\theta_5\in x> \angle40\) \(\theta_5=\frac{3\pi}{2}-\delta_1-\delta_2\) |
Coordinates of the links [\(x\), \(y\), \(z\)] | Angles, deg |
---|---|
\(O_1\)
|
\(\theta_1\)
|
\(O_2\)
|
\(\theta_2\)
|
\(O_3\)
|
\(\theta_3\)
|
\(O_4\)
|
\(\theta_4\)
|
\(O_5\)
|
\(\theta_5\)
|
\(O_6\)
|
\(\theta_6\)
|
What theorem underlies all the calculations?
min | max | |
min | max | |
min | max | |
min | max | |
min | max | |
min | max | |
min | max | |